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An efficient algorithm for generating all Kekul6 
patterns of a generalized benzenoid system* 

Xiao-feng Guo and Fuji Zhang 

Department of Mathematics, Xinjiang University, 
Wulumuqi Xinjiang 830046, PR China 

An algorithm for generating all Kekul6 patterns of a benzenoid system was given 
by Jiang [1]. However, for a generalized benzenoid system, this problem is more 
complex. In this paper, we give an efficient algorithm for generating all Kekul6 patterns 
of a generalized benzenoid system by the generalized directed tree structure [2] of the 
set of Kekul6 patterns of a generalized benzenoid system. 

1. Introduction 

It is well known that the number K(B) of Kekul6 patterns of a benzenoid 
system B is closely related to the stability of the n-electronic system corresponding 
to B. By using the conceptual framework of the valence bond method, some resonance 
theoretical models have been formulated [3-13]. In ref. [3], Clar was the first to 
establish the aromatic sextet theory, based on mutually resonant sextets (hexagons). 
Later, Hosoya and Yamaguchi [4] introduced the sextet polynomial for enumeration 
of Clar's sextets. It was found that there exists a one-to-one correspondence between 
Kekul6 patterns and sextet patterns of a benzenoid system. In recent years, the one- 
to-one correspondence has been rigorously proved [2, 14-16]. In ref. [9], Randi6 
introduced the concept of conjugated cycles (circuits). Enumeration of conjugated 
cycles has led to expressions for the resonant energies of polycyclic conjugated 
hydrocarbons, to the generalization of the Htickel nile to polycyclic conjugated 
systems, etc. [9-12]. Furthermore, Gutman and Randi6 [13] extended the enumeration 
of conjugated cycles to include disjoint conjugated cycles. It was shown that for any 
Kekul6 pattern of a benzenoid system B, the number of groups of disjoint conjugated 
cycles of B is always K(B) - 1. The reciprocal relation between Kekul6 patterns and 
conjugated cycles enables one to determine K(B) from a Kekul6 pattern and the 
corresponding conjugate cycles of it, and even to determine all Kekul6 patterns. 
Alternatively, one can find all groups of disjoint conjugated cycles of a Kekul6 
pattern Ki by taking the symmetric difference of Ki and each of the other Kekul6 
patterns. However, for large conjugated systems, it is more difficult to find all the 
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groups of disjoint conjugated cycles, and enumeration of all the Kekul6 patterns is 
less arbitrary. It was pointed out by Gutman and Randi6 [13] that the interest in 
Kekul6 patterns had brought also new schemes for their enumeration. Although 
some efficient algorithms for finding a Kekul6 pattern of a Kekul6an benzenoid 
system or a generalized benzenoid system have been published [17-19],  it is still 
difficult to find all Kekul6 patterns of a (generalized) Kekul6an benzenoid system. 
On the other hand, many scientists [4, 20-24]  have shown interest in the mathematical 
structures of the set of Kekul6 patterns of a benzenoid system. In ref. [24], Ohkami 
et al. proved the directed tree structure of the set of Kekul6 patterns of a cata- 
condensed benzenoid system; they also believed that the same property exists in 
peri-condensed benzenoid systems. Later, this property was proved by Chen [25]. 
Based on the directed tree structure of the set of Kekul6 patterns of a KekulEan 
benzenoid system B, Jiang [1] established an efficient algorithm for generating all 
Kekul6 patterns of B systematically. 

For a generalized Kekul6an benzenoid system B, the set of Kekul6 patterns 
of B possesses a directed forest structure [25]. This brings about some essential 
difficulty in generating all Kekul6 patterns of B using Jiang's algorithm, since it is 
difficult to find all roots of a directed forest structure. 

Recently, by introducing some new concepts, the present authors [2] generalized 
the above results to obtain the generalized directed tree structure of the set of 
Kekul6 patterns of  a generalized benzenoid system. Based on this result, we give 
a new efficient algorithm for generating all Kekul6 patterns of a generalized Kekul6an 
benzenoid system. 

2. Some related results 

We first give some necessary definitions. For convenience, a generalized 
benzenoid system or a benzenoid system (simply, a GBS or a BS) is always placed 
on a plane so that a pair of edges of each hexagon is parallel to the vertical line. 

DEFINITION 2.1 

A GBS B is a 2-connected subgraph on the hexagonal lattice. A ring of  B 
is the boundary of an interior face of B. 

Generally, B may have some rings with length greater than six which are 
called holes of B (see fig. 1). In particular, if B has no holes, it is also a benzenoid 
system. 

DEFINITION 2.2 

For a Kekul6 pattern K i o f a  GBS B, a Ki-altemating cycle is right (left) if 
the extreme right (left) vertical edge of it is a Ki-double bond. A right (left) Ki- 
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Fig. 1. 

alternating cycle C of  B is said to be a generalized proper (improper) sextet, or 
simply proper (improper) g-sextet, if it is minimal  in the sense that there is no other 
right (left) Ki-alternating cycle whose interior is contained in the interior of  C. In 
particular, if a proper (improper) g-sextet C is a ring of  B, it is also called a proper 
(improper) ring, and if C is a hexagon of  B, it is a proper (improper) sextet (see 
fig. 2). 

C 1 

O © 
C 3 C 4 

Fig. 2. C1: a proper g-sextet; C2: a proper ring; C3(C4): a proper (improper) sextet. 

DEFINITION 2.3 

A simultaneous rotation of all the proper g-sextets (rings; sextets) in a given 
Kekul6 pattern Ki of  a GBS B into left Ki-altemating cycles (improper rings; improper 
sextets) to give another Kekul6 pat tem K) of  B is called a proper g-sextet  
(ring; sextet) rotation. Wedenote i t  as Kj = Rg(Ki), or K i Rg ; Kj (Kj = Rr(Ki), or 
Ki R, ) K  j; Kj = R(Ki), or K i -  R " Kj) (see fig. 3). 

DEFINITION 2.4 

The g-sextet (ring; sextet) rotation graph Rg(B) (Rr(B); R(B)) of  a GBS B is 
a directed graph whose vertex set is the set of  Kekul6 patterns of  B and there is 
an arc from a vertex Ki to another vertex Kj if and only if Rs(Ki) = Kj (R,(Ki) = Kj; 
R ( x ; )  = 
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Fig. 3. In the Kekul~ patterns Rs(KI), Rr(K1) and R(K1), only the 
double bonds which are distinctly other than those in K 1 are drawn. 

DEFINITION 2.5 

A root Kekul6 pattern of  a GBS B is the Kekul6 pattern with no proper sextet. 
A generalized root Kekul6 pattern of  a GBS B is the Kekul6 pattern with no proper 
g-sextet, denoted by a g-root Kekul6 pattern. 

In ref. [25], Chen proved that if B is a BS, then R(B) is a directed tree, and 
the root of  R(B) corresponds to the unique root Kekul6 pattern of  B. However,  if 
B is a GBS which is not a BS, then R(B) is a directed forest with roots more than 
one, and in the general case, Rr(B) is also a directed forest. 

Recently, the following theorems were proved by the present authors [2]. 

THEOREM 2.6 [2] 

Let C be a proper (improper) g-sextet of  a Kekul6 pattern of  a GBS B. Then 
either C is a hexagon or in C there is a ring with length greater than six, i.e. a hole. 

THEOREM 2.7 [2] 

For any Kekul6an GBS B, there is exactly one g-root Kekul6 pattern. 
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Fig. 4. A GBS B and the g-sextet rotation graph Rs(B) of B. 

THEOREM 2.8[2] 

Let B be a Kekul6an GBS. Then the g-sextet rotation graph Rg(B) is a 
directed tree. Moreover, the root of  Rg(B) corresponds to the unique g-root Kekul6 
pattern of  B (see fig. 4). 

It is easy to see from theorem 2.6 that the concept of  a proper (improper) g- 
sextet is a natural and reasonable generalization of  that of  a proper (improper) 
sextet. Hence, all the characters concerning proper (improper) g-sextets and the g- 
sextet rotation graph of  a GBS will naturally include those of  proper (improper) 
sextets and the sextet rotation graph of  a BS. 

3. An efficient algorithm for generating all Kekul6 pat terns of  a GBS 

Based on the generalized directed tree structure of  the set of  Kekul6 patterns 
of  a GBS B, we can design an algorithm similar to that of  Jiang. However,  it is 
much more difficult to find a proper (improper) g-sextet of  a GBS than to find a 
proper (improper) sextet of  a BS. We have to explore this new way further. 

THEOREM 3.1 

Let C be a proper (improper) g-sextet of  a Kekul6 pattern Ki of  a GBS B. 
Then, if C is neither a hexagon nor a hole, aH the edges with one end vertex on 
C and the other in the interior of  C are fixed single bonds. 

Proof 
Since C is a Ki-altemating cycle that is neither a hexagon nor a hole, in B 

there is an edge e with one end vertex v on C and the other in the interior o f  C 
which is a K/-single bond. Suppose that e is not a fixed single bond. Then there 
is a Kekul6 pattern Kj such that e is a Kj-double bond. Thus, in the symmetric 
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difference KiAK j, there is a Ki(Kj)-alternating cycle C* containing the edge e. Let 
v e . . .  v '  be a Ki(Kj)-alternating path on C* which has only the end vertices v and 
v '  on C. Let e* be a Ki-double bond with an end vertex being v. Then the segment 
r e . . . v '  on C* and r e * . . ,  v" on C form a right (left) Ki-alternating cycle of  B 
whose interior is contained in the interior of  C, contradicting that C is a proper 
(improper) g-sextet of  Ki of B (see fig. 5). 

e~r 

LL. ', 

Fig. 5. 

Theorem 3.1 implies the following corollaries. 

COROLLARY 3.2 

Let B be a GBS with no fixed bond. Then any proper or improper g-sextet 
of  B is either a hexagon or a hole. 

COROLLARY 3.3 

Let B be a GBS with no fixed bond. Then Rg(B) =_ Rr(B). 

The above theorems and corollaries mean that, for finding proper (improper) 
g-sextets of  a GBS with no fixed bond, we need only to recognize proper (improper) 
rings, and it is as easy as to recognize proper (improper) sextets. This enables us 
to establish an efficient algorithm for generating all Kekul6 patterns of  a GBS with 
no fixed bond. 

DEFINITION 3.4 

Let B be a GBS with no fixed bond, and K a Kekul6 pattern of B. A set Si(K) 
of  improper rings of  K is said to be a proper ring covering of  K if each of  the proper 
rings of  K has at least an edge in common with some ring in Si(K) (see fig. 6). 

DEFINITION 3.5 

A simultaneous rotation of all improper rings in a proper ring covering of  a 
Kekul6an pattern Kj of a GBS B with no fixed bond into proper rings to give another 
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Fig. 6. The Kekul6 pattern K of B has three proper rings (indicated by 0) 
and six proper ring coverings, where SI(K ) = {s 1, s3}, S2(K) = {sl, s4}, 
S3(K) = {Sl, s3, $41, S4(K) = {s1, $2, s31, as(K) = (Sl, s2, s41, S6(K) = {Sl, $2, 3'3, s4}- 

Kekul6 pattern Ki is called a proper ring covering rotation of  Kj, denoted by 
Rr(K)) = X i or Kj -R" > K i. 

THEOREM 3.6 

Let Kj be a Kekul6 pattern of a GBS with no fixed bond. Then there exists 
a Kekul6 pattern Ki of B such that R,(Ki) = Kj if and only if there is a proper ring 
covering of Kj such that R,(Kj) = K i. 

Proof 
Suppose that there is a Kekul6 pattern Ki of B such that Rr(Ki) = Kj, and Si 

is the set of all the proper rings of Ki. Then any proper ring s of Kj must have an 
edge in common with a ring in Si. Otherwise, s would also be a proper ring of K i, 

a contradiction. Hence, Si is a proper ring covering Kj which satisfies that R,(Kj) = g i . 

Conversely, assume that there is a proper ring covering Si(Kj) of Kj such that 
Rr(Kj) = K i. Then all the proper rings of Kj are not proper rings of K i since each 
of them has an edge in common with some ring in SI(Kj). Thus, SI(Kj) is just the 
set of  all the proper rings of Ki, and Rr(Ki) = Kj. 

ALGORITHM 3.7 

Step 1: 

Step 2: 

Step 3: 

Let B be a Kekul6an GBS with no fixed bond. 

Find a Kekul6 pattern of  B by the Hungarian algorithm, and then find the 
g-root Kekul6 pattern K 0 of B by repeating the proper ring rotations. Let 
KB(i) be the set of the Kekul6 pattems of distance i to Ko in R,(B). Set 
i = 0 .  
For every Kekul6 pattern Kj in KB(i), search all the proper ring coverings 
of Kj and generate all the Kekul6 pattems in the set {Rr(Kj)} by proper 
ring coverings of K i. Set  {-Rr(Kj)} C KB(i + 1). 

IfKo(i + 1) = O, all Kekul6 patterns have been generated, then stop. Otherwise, 
set i+  1 ~ i, and go to step 2. 
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Fig. 7. Generation of all Kekul~ patterns of a GBS B 
with no fixed bonds by proper ring covering rotations 
from the g-root Kekul~ pattern K. Here, the rings marked o 
are proper rings, while the starred rings are improper. 

An example of using this algorithm to generate all the Kekul6 patterns of a 
GBS B is shown in fig. 7. 

For a GBS B with fixed bonds, that is, an essentially disconnected GBS, after 
deleting from B all fixed single bonds and the vertices of  all fixed double bonds, 
the resultant graph consists of some connected components, called effective units, 
each of which is a GBS with no fixed bond. Clearly, any Kekul6 pattern of B 
consists of  all the fixed double bonds of B together with a Kekul6 pattern of every 
effective unit. Hence, we can establish the following algorithm for generating all 
Kekul6 patterns of  an essentially disconnected GBS. 
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ALGORITHM 3.8 

Let B be an essentially disconnected GBS with effective units B 1, B 2 . . . . .  Bn, 

and E0 the set of fixed double bonds of B. 

Step 1: Apply algorithm 3.7 to generate all Kekul6 pattems o f  B i, for i = 1, 2 . . . . .  n. 

Step 2: Generate all Kekul6 patterns of B by taking every element in 
KBI × Ka2 ×.  •. × KBn together with E0. 
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